DD-763

M. A./M. Sc. (Fourth Semester) EXAMINATION, 2020

MATHEMATICS
Paper Second
(Partial Differential Equations and Mechanics)
Time : Three Hours
Maximum Marks : 80
Note : All questions are compulsory. Attempt any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) State and prove local existence theorem for first order non-linear PDE.
(b) Prove that the function x (.) solves the system of Euler-Lagrange's equations :

$$
\begin{aligned}
-\frac{d}{d s} \mathrm{D}_{q} \mathrm{~L}(\dot{x}(s), x(s))+\mathrm{D}_{x} \mathrm{~L} \dot{x}(s), x(s) & =0 \\
(0 & \leq s \leq t)
\end{aligned}
$$

(c) State and prove Lax-Oleinik's formula.
P. T. O.

Unit-II

2. (a) Using the method of separation of variables solve the heat equation :

$$
\begin{aligned}
u_{t}-\Delta u & =0 \text { in } \mathrm{U} \times(0, \infty) \\
u & =0 \text { on } \partial \mathrm{U} \times[0, \infty) \\
u & =g \text { on } \mathrm{U} \times\{t=0\}
\end{aligned}
$$

where $g: \mathrm{U} \rightarrow \mathrm{R}$ is given.
(b) Derive Barenblott's solution to the porous medium equation using similarity under scaling.
(c) Explain Hodograph transform.

Unit-III

3. (a) Suppose $k, l: \mathrm{R} \rightarrow \mathrm{R}$ are continuous functions, that l grows at most linearly and that k grows at least quadratically. Assume also there exists a unique point $y_{0} \in \mathrm{R}$ such that :

$$
k\left(y_{0}\right)=\min _{y \in \mathrm{R}} k(y)
$$

Then prove that :

$$
\lim _{\epsilon \rightarrow 0} \frac{\int_{-\infty}^{\infty} l(y) e^{-\frac{k(y)}{\epsilon}} d y}{\int_{-\infty}^{\infty} e^{-\frac{k(y)}{\epsilon}} d y}=l\left(y_{0}\right)
$$

(b) Discuss unperturbed PDE :

$$
\operatorname{div}(u b)=\delta_{0} \text { in } \mathrm{R}^{2}
$$

where δ_{0} is the Dirac measure R^{2} giving unit mass to the point O .
(c) Solve the wave equation using stationary phase method.

Unit-IV

4. (a) Derive mathematical expressions for Hamilton's principle.
(b) Derive Whittaker's equations.
(c) State and prove Lee Hwa-Chung's theorem.
Unit-V
5. (a) Derive Hamilton-Jacobi's equations.
(b) Prove that the Lagrange bracket is invariant under canonical transformation.
(c) Using Poisson brackets relation, show that the following transformation is canonical if $a d-b c=1$:

$$
\begin{aligned}
& \mathrm{Q}=a q+b p \\
& \mathrm{P}=c q+d p
\end{aligned}
$$

