Roll No.

DD-476

M. Sc. (Second Semester) EXAMINATION, May-June, 2020

COMPUTER SCIENCE

Paper Fifth

(Numerical Analysis)

Time: Three Hours

Maximum Marks: 100

Note: Attempt any *two* parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) Find a real root of the equation $f(x) = x^3 4x 9 = 0$, using Bisection method in four stages.
 - (b) Using Regula-Falsi method, find the real root of the equation $x^4 x 10 = 0$.
 - (c) Solve the equation $2x^4 4x^3 + 11x^2 9x 26 = 0$ one root being $\frac{1}{2} + \frac{5}{2}i$.

(B-36) P. T. O.

Unit-II

2. (a) Solve the following system by Gauss elimination method:

$$6x_1 + 3x_2 + 2x_3 = 6$$

$$6x_1 + 4x_2 + 3x_3 = 0$$

$$20x_1 + 15x_2 + 12x_3 = 0$$

(b) Factorise the matrix:

$$A = \begin{bmatrix} -2 & 4 & 8 \\ -4 & 18 & -16 \\ -6 & 2 & -20 \end{bmatrix}$$

in the form LU, where L is the units lower triangular matrix and U is the upper triangular matrix.

(c) Find the characteristic equation of the matrix

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 and verify that it is satisfied by

A and hence obtain A^{-1} .

Unit-III

- 3. (a) Find the first term of the series whose second and subsequence terms are 8, 3, 0, -1, 0.
 - (b) From the following table of values of x and f(x) determine f(0.23):

x	f(x)
0.20	1.6596
0.22	1.6698
0.24	1.6804
0.26	1.6912
0.28	1.7024
0.30	1.7139

(c) Using Lagrange's interpolation formula find the value of y for x = 9.5 from the following table:

x	y = f(x)
7	3
8	1
9	1
10	9

Unit-IV

4. (a) Calculate the first and second derivatives of the functions tabulated below, at the point x = 1.1:

x	y = f(x)
1.0	0
1.2	0.128
1.4	0.544
1.6	1.296
1.8	2.432
2.0	4.000

- (b) Find the value of $\int_{1}^{2} \frac{dx}{x}$ by Simpon's rule. Hence obtain approximate value of $\log_{e} 2$.
- (c) Calculate $\int_0^{\pi/2} e^{\sin x} dx$ correct to four decimal places by Simpson's $\frac{3}{8}$ rule.

Unit-V

- 5. (a) Use Taylor's series method to find y for x = 0.1 correct to four places of decimal, if satisfies $\frac{dy}{dx} = x y^2 \text{ with } y_0 = 1, x_0 = 0.$
 - (b) Explain Euler's method of the successive approximation for the solution of $\frac{dy}{dx} = f(x, y)$ where $y = y_0$ at $x = x_0$.
 - (c) Solve the differential equation $\frac{dy}{dx} = x^2 + y^2 2$; given y(-0.1) = 1.09, y(0) = 1, y(0.1) = 0.89, find y(0.2) by series expansion and then find y(0.3) by Milne's method.