: 04

Roll No.....

Total No. of Units

 $Total\ No.\ of\ Printed\ Pages\ : 03$

Code No.: 03/201

Third Semester Examination, Dec. 2018

M.Sc. PHYSICS

Paper - II

NUCLEAR AND PARTICLE PHYSICS

Time: 3 Hrs. Max. Marks: 80

• Part A and B of each question in each unit consist of very short answer type

questions which are to be answered in one or two sentences. Part C (Short answer type) of each question will be answered in 200-250 words.

Unit - I

Q.1 A. What is the relationship between half life time and decay constant

' '? (2)

Q.1 B. Whether the following nuclear reaction is possible or not justify: (2

Q.1 C. Show the reaction of for proton by transmutation. (4)

OR

Define compound nuclear reaction mechanism.

	(2)	Code No.: 03/201
Q.1 D.	Explain nucleon-nucleon interaction.	(12)
	OR	
	Explain the meaning of differential and total sc Obtain an expression for the total cross-secti low energies.	_
Unit - II		
Q.2 A.	Define magic number.	(2)
Q.2 B.	How much energy is released by the diffu nuclei?	sion of two deuteron (2)
Q.2 C.	Explain the spin-orbit coupling.	(4)
	OR	
	Find the ground state angular momentum of	
	a) b)	
Q.2 D.	Discuss the limitation and failures of a single pa	article shell model. (12)
OR		
	Explain in brief collective model of Bohr and N	Aottelson.
Unit - III		
Q.3 A.	What is a secular equilibrium state?	(2)
Q.3 B.	What is the value of 'Q' for exothermic and end	dothermic reactions? (2)

Q.3 C. Explain in brief the Dirac's theory of pair production.

(0)

(3) Code No.: 03/201

OR

Define nuclear resonance absorption.

Q.3 D. Describe internal conversion and nuclear isomerism. (12)

OR

Discuss briefly the methods for measuring the energies of

Unit - IV

Q.4 A. In which reactions pions are produced? **(2)**

Q.4 B. What are the different kinds of Leptons? **(2)**

Q.4 C. Define C-P-T theorem. **(4)**

OR $\mathcal{L}_{\mathbf{p}}$ $\mathcal{L}_{\mathbf{p}}$

> Indicate whether the following reactions are examples of associate production. Justify your answers.

i)

ii) $\pi + n \rightarrow K^0 + \Sigma$

iii)

iv)

(4)

Q.4 D. What are the facts that lead to the proposal of strangeness quantum number? (12)

OR

Explain Iso-spin multiples, strangeness and associated production.