ED-2814

M. A./M. Sc. (Final) EXAMINATION, 2021
 MATHEMATICS
 (Optional)
 Paper Fifth (iii)
 (Fuzzy Sets and Their Application)
 Time : Three Hours
 Maximum Marks : 100

Note : Attempt any two parts from each question. All questions carry equal marks.

1. (a) If:

$$
\mathrm{A}=\frac{1}{1.0}+\frac{2}{0.8}+\frac{3}{0.5}+\frac{4}{0.1}
$$

is defined on $\mathrm{X}=1,2,3,4$. Find all its α-cuts sets. Also prove that A can be expressed in terms of the family composed of all of its α-cuts.
(b) Define t-norm with example and prove that the standard fuzzy intersection is the only idempotent t-norm.
P. T. O.
(c) If A is a fuzzy set defined on X , then prove that $\bigcup_{\alpha \in[0,1]}{ }_{\alpha+} \mathrm{A}=\mathrm{A}_{1}$ where ${ }_{\alpha+} \mathrm{A}$ is a special set and

$$
{ }_{\alpha+} \mathrm{A}(x)=\alpha^{\alpha+} \mathrm{A}(x) .
$$

2. (a) If R is fuzzy relation on X^{2}. Then prove that fuzzy relation :

$$
\mathrm{R}_{\mathrm{T}(i)}=\bigcup_{n=1}^{\infty} \mathrm{R}^{(n)}
$$

is the smallest i-transitive closure of R .
(b) Define symmetric fuzzy relation with example. If R is symmetric fuzzy relation, then prove that each power of R is symmetric.
(c) What do you mean by sagittal diagram. Draw the sagittal diagram for the following fuzzy relation R :

$$
\mathrm{R}=\begin{gathered}
y_{1} \\
y_{2}
\end{gathered} y_{3} \quad y_{4} \begin{array}{r}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\left[\begin{array}{cccc}
.8 & 0 & .3 & .4 \\
.3 & 1 & .8 & 0 \\
.7 & 0 & 1 & 1 \\
.4 & .5 & 0 & 0 \\
0 & 1 & .5 & .8
\end{array}\right]
$$

3. (a) Solve the following fuzzy relation equation using max-min operations :

$$
\text { P O }\left[\begin{array}{ccc}
.9 & .6 & 1 \\
.8 & .8 & .5 \\
.6 & .4 & .6
\end{array}\right]=\left[\begin{array}{lll}
.6 & .6 & .5
\end{array}\right]
$$

(b) If m_{1} and m_{2} are basic probability assignments on $\mathrm{X}=a, b, c, d$ which are obtained from two independent sources be defined as follows :

$$
\begin{array}{ll}
m_{1} a, b=.2 & m_{1} b, d=.5 \\
m_{1} a, c=.3 & m_{2} \quad a, d=.2 \\
m_{2} \quad b, c=.5 & m_{2} \quad a, b, c=.3
\end{array}
$$

Calculate the combined basic probability assignment $m_{1.2}$ by using the Dempster rule of combination.
(c) Prove that:
(i) $\quad \operatorname{bel}(\mathrm{A})+\operatorname{bel}(\overline{\mathrm{A}}) \leq 1$
(ii) $\mathrm{pl}(\mathrm{A})+\mathrm{pl}(\overline{\mathrm{A}}) \geq 1$
4. (a) What do you mean by interpolation method ? If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$ are fuzzy sets such that:

$$
\begin{aligned}
& \mathrm{A}_{1}=\frac{1}{x_{1}}+\frac{.9}{x_{2}}+\frac{.1}{x_{3}} \\
& \mathrm{~A}_{2}=\frac{.9}{x_{1}}+\frac{1}{x_{2}}+\frac{.2}{x_{3}} \\
& \mathrm{~B}_{1}=\frac{1}{y_{1}}+\frac{.2}{y_{2}} \\
& \mathrm{~B}_{2}=\frac{.2}{y_{1}}+\frac{.9}{y_{2}}
\end{aligned}
$$

X is A is fact where $\mathrm{A}=\frac{.8}{x_{1}}+\frac{.9}{x_{2}}+\frac{.1}{x_{3}}$
Then calculate the conclusion B by method of interpolation.
(b) Write short notes on the following :
(i) unconditional and unqualified proposition
(ii) relative quantifier
(iii) multivalued logic
(iv) linguistic hedges
(c) If $\mathrm{X}=\{1,2,3,4\}$ and $\mathrm{Y}=\{1,2,3,4,5,6\}$ are two universe of discourse and

$$
\begin{aligned}
& A=\frac{0.6}{2}+\frac{1}{3}+\frac{0.2}{4} \\
& B=\frac{0.4}{2}+\frac{1}{3}+\frac{0.8}{4}+\frac{0.3}{5}
\end{aligned}
$$

Apply the fuzzy modus ponens rule to find the relation. If x is A, then y is B.
5. (a) If each individual of four decisions makes has a total preference ordering $\mathrm{P}_{i}(i \in \mathrm{~N})$ on a set of alternatives $\mathrm{X}=\{a, b, c, d\}$ as :

$$
\begin{aligned}
& \mathrm{P}_{1}=\{a, b, d, c\} \\
& \mathrm{P}_{2}=\{a, c, b, d\} \\
& \mathrm{P}_{3}=\{b, a, c, d\} \\
& \mathrm{P}_{4}=\{a, d, b, c\}
\end{aligned}
$$

Find the fuzzy preference relation. Also find the α-cuts of the fuzzy relation.
(b) Solve the following fuzzy linear programming problem :
Maximize :

$$
\begin{gathered}
z=5 x_{1}+4 x_{2} \\
(4,2,1) x_{1}+(5,3,1) x_{2} \leq(24,5,8) \\
(4,1,2) x_{1}+(1, .5,1) x_{2} \leq(12,6,3) \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

(c) Discuss the methods of defuzzification.

