ED-2801

M.A./M.Sc. (Previous) Examination, 2021

MATHEMATICS

> Paper - I

Advanced Abstract Algebra

Time : Three Hours] [Maximum Marks : 100
Note : Answer any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Define composition series and equivalence of two composition series. Also show that Jordan Holder theorem fails for infinite group by giving example of set of integers.
(b) Define finitely generated extension and show that the field of characteristic zero and finite fields are perfect fields.

(2)

(c) Define normal extension and show that if E is simple extension of F, then there are only a finite number of intermediate fields between F and E.

Unit-II

2. (a) Define Galois extension and fixed field also show that the group $G\left(\frac{\mathbb{Q}(2)}{\mathbb{Q}}\right)$, $\alpha^{5}=1, \alpha \neq 1$ is isomorphic to the cyclic group of order 4 .
(b) Define group of F-automorphisms of E and show that if F is the field of characteristic $\neq 2$, with $x^{2}-a \in F[x]$ be an irreducible polynomial over F then order of its Galois group is 2 .
(c) Define solvable Galois group and show that if $f(x) \in F[x]$ is solvable by radicals over F then its splitting field E over F has solvable Galois group $G(E / F)$.

Unit-III

3. (a) Define simple module with example and show that an R-module M is cyclic if and only if M is isomorphic to R / I, where I is a left module of R and R is ring with unity.

(3)

(b) State and prove Hilbert basis theorem.
(c) Define Artinian module with example and show that M is noetherian if and only if every submodule of M is finitely generated.

Unit-IV

4. (a) Define nilpotent transformation and show that two linear transformations are equivalent if and only if they have same number of invariants.
(b) Find Jordan Canonical form of

$$
\left[\begin{array}{rrr}
0 & 2 & -1 \\
-3 & 8 & 3 \\
2 & 4 & -1
\end{array}\right]
$$

(c) In a vector space V define a transformation T by

$$
\begin{array}{r}
T\left(\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3}\right)=\alpha_{0}+\alpha_{1}(x+1) \\
+\alpha_{2}(x+1)^{2}+\alpha_{3}(x+1)^{3}
\end{array}
$$

Compute the matrix of T is the basis $1,1+x, 1+x^{2}, 1+x^{3}$.

(4)

Unit-V

5. (a) Define equivalent matrices and show that any submodule of any free R-module is also free and no. of elements is the basis in the submodule are less than or equal to the number of elements in the basis in the module.
(b) Define invariants and show that A is equivalent to the diagonal matrix diag ($a_{1}, a_{2}, \ldots . a_{i}, 0,0,0 \ldots 0$) such that $a_{1}\left|a_{2}\right| a_{3}|\ldots| a_{i}$, where A is an $m \times n$ matrix over a principal ideal domain R.
(c) Define Rational Canonical form of matrix. Explain briefly is $\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$ a diagonal matrix.
