Roll No.	•••••
KUII 110.	•••••

DD-2801

M. A./M. Sc. (Previous) EXAMINATION, 2020

MATHEMATICS

Paper First

(Advanced Abstract Algebra)

Time: Three Hours

Maximum Marks: 100

Note: Attempt any *two* parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) Prove that any finite P-group is solvable.
 - (b) E be an extension field of a field F and $u \in E$ be algebraic over F. If $p(x) \in F(x)$ be a polynomial of the least degree such that p(u) = 0, then prove that:
 - (i) p(x) is irreducible over F
 - (ii) If:

$$g(x) \in F(x)$$

is such that g(u) = 0, then p(x) | g(x).

(A-30) P. T. O.

- (iii) There is exactly are menic polynomial $p(x) \in F(x)$ is least degree such that p(u) = 0.
- (c) If C is the field of complex numbers and R is the field of real numbers, then show that C is a normal extension of R.

Unit-II

2. (a) Show that the polynomial:

$$x^7 - 10x^5 + 15x + 5$$

is not solvable by radicals over Q.

(b) Prove that:

$$f(x) \in F(x)$$

is solvable by radicals over F if and only if its splitting field E over F has solvable Galois group G (E/F).

(c) Let F be a field of characteristic $\neq 2$ and $x^2 - a \in F(x)$ be an irreducible polynomial over F, then prove that its Galois group is of order 2.

Unit—III

- 3. (a) Let R be a ring with unity. Show that an R module $M \text{ is cyclic if and only if } M \cong \frac{R}{I} \text{ for some left ideal } I \text{ of } R.$
 - (b) If M be a finitely generated free module over a commutative ring R. Then prove all bases of M have the same number of elements.

(A-30)

(c) Prove that every submodule and every quotient module of Noetherian module is Noetherian.

Unit—IV

- 4. (a) Let $\lambda \in F$ be a characteristic root of $T \in A$ (V). Then prove that for any polynomial $q(x) \in F(x)$, $q(\lambda)$ is a characteristic root of q(T).
 - (b) Let the linear transformation $T \in A_F(V)$ be nilpotent, then prove that :

$$\alpha_0 + \alpha_1 T + \alpha_2 T^2 + \dots + \alpha_m T^m$$

where $\alpha_i \in F$, $0 \le i \le m$, is invertible if $\alpha_0 \ne 0$.

(c) Find the Jordan Canonical form of:

$$\mathbf{A} = \begin{bmatrix} 0 & 4 & 2 \\ -3 & 8 & 3 \\ 4 & -8 & -2 \end{bmatrix}.$$

Unit-V

- 5. (a) Find the rational canonical form of the matrix whose invariant factors are (x-3), (x-3)(x-1) and $(x-3)(x-1)^2$.
 - (b) Find the Smith normal form and rank for the matrix over PID R:

$$\begin{bmatrix} -x - 3 & 2 & 0 \\ 1 & -x & 1 \\ 1 & -3 & -x - 2 \end{bmatrix},$$

where R = Q[x].

(c) Let R be a principal ideal domain and let M be any finitely generated R module, then:

$$M \simeq R^s \oplus \frac{R}{R \ a_1} \oplus \frac{R}{R \ a_2} \oplus \dots \oplus \frac{R}{R \ a_r}$$

a direct sum of cyclic modules where the a_i are non-zero non-units and $a_i \mid a_{i+1}, i=1,2,...,r-1$.

DD-2801 550