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• Part A and B of each question in each unit consist of very short answer type

questions which are to be answered in one or two sentences.

•

Part C (Short answer type) of each question will be answered in 200-250

words.

• Part D (Long answer type) of each question should be answered within

the word limit 400-450.

Unit - I

Q.1 A. Write the definition of uniform convergence of series of

functions.  (2)

Q.1 B. Show that the series  (2)

cos cos2 cos3 cos

1 2 3
p p p p

x x x nx

n
+ + +−−−−+ +−−−

converges uniformly on R for 

1p >

.

Q.1 C. Test the series 

sin
p

nx

n
∑

for uniform convergence in any interval.  (4)

Unit - IV

Q.4 A. Write definition of the integral of a 2-form.  (2)

Q.4 B. Write statement of Stoke's theorem.  (2)

Q.4 C. State and prove the partitions of unity.  (4)

OR

Find the largest and smallest distances from ( )0,0,0  to the ellipsoid

2 2 2

2 2 2
1

x y z

a b c
+ + =

, 

0 a b c< < <

.

Q.4 D. Show that the greatest rectangular parallopiped inscribed in the ellipsoid 2 2 2

2 2 2
1

x y z

a b c
+ + =

  is  

8

3 3

abc

 (12)

OR

Prove that the rectangular solid of maximum volume that can be inscribed

in a sphere is a cube.
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OR

Prove that the series 

2 2 2

1 2 2
cos cos 2
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a a
x x

a a a
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− −

 is

uniformly convergent in any finite interval.

Q.1 D. State and prove the Cauchy's general principle of uniform

convergence.  (12)

OR

State and prove the Abel's test for uniform convergence.

Unit - II

Q.2 A. Write statement of Riemann's theorem.  (2)

Q.2 B. Find the radius of convergence of the series 2 3
1 2 3 4x x x+ + + + ⋅⋅ ⋅⋅⋅ ⋅

 (2)

Q.2 C. Prove that the series 

1 1 1 1
1 1 is log 2.

2 3 4 2
+ − + + − +⋅⋅⋅ ⋅⋅ ⋅

 (4)

OR

Determine the radius of convergence of the following power series :
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Q.2 D. State and prove the Abel's theorem (second form) for power series.

 (12)

OR

Prove that the sum of an absolute convergent series does not alter with

any rearrangement of terms.
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Unit - III

Q.3 A. Write definition of linearly independent and linearly dependent.  (2)

Q.3 B. Write statement of inverse function theorem.  (2)

Q.3 C. Let [ ]: ,
m

f a b R→  and let f be differentiable at 

( )0 0x a x b< <

. If

0n na x bα β< < < <

 for 

1, 2, 3,n = ⋅⋅⋅ ⋅⋅ ⋅

 and 

0 0,n nx xα β→ →

 as

n → ∞  then prove that  :  (4)

( ) ( ) ( )0lim '
n n

n n
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OR

Let E be an open set in nR , f maps E into Rm and x E∈ and( ) ( )
0

lim 0
h

f x h f x Ah

h→

+ − −
=

holds with 

1A A=

and with 2A A= . Then prove that 

1 2A A=

.

Q.3 D. State and prove the implicit function theorem.  (12)

OR

(a) Explain derivatives of  higher order.

(b) Let 

2:f E R R⊂ →

 be a function on an open set E of R2 into R. If

the partial derivatives 1D f  and 

2D f

exist in an open ball 

( ), , 0B x r r >

and 

1 2,D f D f

 both are differentiable at 

,x

 then prove that

( )( ) ( )12 21D f x D f x=

 i.e.  ( ) ( )1 2 2 1D D f x D D f x= .
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