\qquad Total No. of Units : 04

Unit - IV

Q. 4 A. Write definition of the integral of a 2-form.
Q. 4 B. Write statement of Stoke's theorem.
Q. 4 C. State and prove the partitions of unity.

OR

Find the largest and smallest distances from $(0,0,0)$ to the ellipsoid
Q. 4 D. Show that the greatest rectangular parallopiped inscribed in the ellipsoid is

OR

Prove that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.
---X---

Code No. : 01/203

First Semester Examination, Dec. 2018

M.Sc. MATHEMATICS

Paper - II

REAL ANALYSIS

Time: 3 Hrs.
Max. Marks: 80

- Part A and B of each question in each unit consist of very short answer type questions which are to be answered in one or two sentences.
Part C (Short answer type) of each question will be answered in 200-250 words.
(2ath ind an

Unit - I

Q. 1 A. Write the definition of uniform convergence of series of functions.
Q. 1 B. Show that the series
converges uniformly on R for
Q. 1 C. Test the series
for uniform convergence in any interval.

Prove that the series
is uniformly convergent in any finite interval.
Q. 1 D. State and prove the Cauchy's general principle of uniform convergence.
(12)

OR
State and prove the Abel's test for uniform convergence.

Unit - II

Q. 2 A. Write statement of Riemann's theorem.

(2)
Q. 2 B. Find the radius of convergence of the series $1+2 x+3 x^{2}+4 x^{3}+\cdots \cdots$
Q. 2 C. Prove that the series

OR

Determine the radius of convergence of the following power series :
i) $\quad \sum_{n=1}^{\infty} \frac{\underline{\mid 2 n}}{\left(\lfloor n)^{2}\right.} x^{n}$
ii) $\quad \sum_{n=0}^{\infty} \frac{\underline{n}}{n^{n}} x^{n}$
Q. 2 D. State and prove the Abel's theorem (second form) for power series.

OR

Prove that the sum of an absolute convergent series does not alter with any rearrangement of terms.

Unit - III

$$
\begin{equation*}
\text { Q. } 3 \text { A. Write definition of linearly independent and linearly dependent. } \tag{2}
\end{equation*}
$$

Q. 3 B. Write statement of inverse function theorem.
Q. 3 C. Let $f:[a, b] \rightarrow R^{m}$ and let f be differentiable at . If
for and as
$n \rightarrow \infty$ then prove that :

OR

$$
\rho_{n}-\Gamma_{n} \mid
$$

holds with and with $A=A_{2}$. Then prove that
Q. 3 D. State and prove the implicit function theorem.

OR

(a) Explain derivatives of higher order.
(b) Let be a function on an open set E of R^{2} into R. If the partial derivatives $D_{1} f$ and exist in an open ball and both are differentiable at then prove that i.e. $D_{1} D_{2} f(x)=D_{2} D_{1} f(x)$.

