Roll No.

DD-457

M. Sc. (Second Semester) EXAMINATION, May-June, 2020

CHEMISTRY

Paper No. CH-9

(Quantum Chemistry: Thermodynamics and Chemical

Dynamics—II)

Time: Three Hours

Maximum Marks: 80

Note: Attempt all the *four* questions. *One* questions from each Unit is compulsory. All question carry equal marks.

Unit-I

- 1. (a) Write down the role of operators in quantum mechanics, with suitable examples.
 - (b) Prove that: 5

$$\left[x, \frac{d}{dx}\right] = -1$$

(c) Explain the operator ∇ and ∇^2 with suitable example.

(B-29) P. T. O.

Or

	(a)	Write down the application of determinants in quantum chemistry.
	(b)	Explain Ladder operators in brief. 5
	(c)	The approximate energy of a system is given by
		$E = K^2 + 2K - 5$ where K is a variational parameter.
		What value of K leads to the lowest energy and what is the value of the minimum energy?
		Unit—II
2.	(a)	What is thermodynamic probability? Explain its importance to statistical thermodynamics.
	(b)	Define the term 'partition function' and discuss its physical significance.
	(c)	What is statistical weight factor (g)? Explain with example.
		Or
	(a)	Derive the mathematical form of Fermi-Dirac statics.
	(b)	Discuss Einstein models of equation for specific heat of solid at low temperature. Write down its
	•	ilmitations.
	(c)	Explain permutation with example. 4 Unit—III
3.	(a)	Discuss the structure of electrified interfaces. 6
	(b)	
		Or
	(a)	Derive Tafel equations for overpotential. Discuss its graphical plots.

(b)	Discuss Stern model for the electrified double layer.
	8
(c)	Explain 'hydrogen electrode' with diagram. 4
	Unit—IV
(a)	What are fast reactions? Discuss nuclear magnetic resonance method for study of fast reaction.
(b)	Derive an expression to calculate K with the help of modifications made by Marcus in the RRK theory.
	10
	$\sim Or$
(a)	Give energetics of vary fast reactions. Explain with derivation the nature of relaxation method.
(b)	Discuss Riee-Ramsperger-Kassel-Marcus (RRKM)

Write down the dynamics of molecular motion. (c)

920