(4) Code No.: 02/403

Roll No.....

Total No. of Units: 04
Total No. of Printed Pages: 04

OR

Show that if there exists such that

•

Q.4 D. Let $F \in H(U - \{0\})$, F be one to one in U, F has a pole of order 1 at , with residue 1, and neither nor are in then show that . (12)

OR

If be an analytic function in a region containing the closure of the and satisfying . Then show that there is a dis in which is one-one and such that contains a disc of radius .

---X---

Code No.: 02/403

Second Semester Examination, May 2019

M.Sc. MATHEMATICS

Paper - IV

ADVANCED COMPLEX ANALYSIS (II)

Time: 3 Hrs. Max. Marks: 80

• Part A and B of each question in each unit consist of very short answer type questions which are to be answered in one or two sentences.

Part C is short answer type and Part D is long answer type.

Unit - I

Q.1 A. Define Euler's Gamma function.

(2)

(2)

Q.1 B. Write the statement of Euler's theorem.

Q.1 C. Prove that the zeta can be extended to a mesomorphic in the whole plane with only a simple pole at Z=1 and for satiestfies Riemnn's functional equation. (4)

OR

Let U and V be two open subset of with and . If it is a component of and then show

that

Q.1 D. State and prove Legendre's duplication formula. (12)

P.T.O.

(2) Code No.: 02/403

OR

If Re then show that

Unit - II

- Q.2 A. Write the statement of meanvalue theorem for Harmonic functions. (2)
- Q.2 B. Define Poisson Kernel. (2)
- Q.2 C. Let f(z) be analytic in a domain D and let vanish over a domain D_o which is a part of D. Then show that vanish over the whole domain D. (4)

OR

Let be a path from a to b and let and be analytic continuations along r such that then show that $[f_1]b = [g_1]b$.

Q.2 D. State and prove Schwarz's Reflection Principle for symmetric region. (12)

OR

Show that when 0 < b < 1 the series

$$+\frac{z-ib}{1+ib}-\frac{1}{2}\frac{\left(z-ib\right)^2}{\left(z+ib\right)^2}+---$$
 is analytic continuation of the

function defined by the series $z - \frac{1}{2}z^2 + \frac{1}{3}z^3 - \cdots$

(3) Code No.: 02/403

Unit - III

Q.3 A. Define Rank of an Entire function. (2)

Q.3 B. Define Green's function. (2)

Q.3 C. Find the order of cos z function. (4)

OR

If is an entire function of order and convergence exponent, then show that show that .

Q.3 D. State and prove Hadamrd's three circles theorem. (12)

OR

be analytic for a left be the moduli of the zero of f(z) in arranged as a non-decreasing sequence. Then show that if , prove that

$$\log \frac{r^n \left| f(0) \right|}{r_1, r_2 - \cdots - r_n} = \frac{1}{2\pi} \int_0^{2\pi} \log \left| f(re^{i\theta}) \right| d\theta.$$

Unit - IV

Q.4 A. Define Landau's constant. (2)

Q.4 B. Write the statement of \perp -theorem. (2)

Q.4 C. Let be an analytic function in the disc such that

for all z in then show

that f is one-one. (4)

P.T.O.