\qquad Total No. of Units : 04

OR

Show that if there exists such that
Q. 4 D. Let $F \in H(U-\{0\}), F$ be one to one in U, F has a pole of order 1 at , with residue 1 , and neither nor are in
then show that (12)

OR

If be an analytic function in a region containing the closure of the and satisfying . Then
show that there is a dis in which is one-one and such
that
contains a disc of radius

Code No. : 02/403

Second Semester Examination, May 2019
 M.Sc. MATHEMATICS

Paper - IV
 ADVANCED COMPLEX ANALYSIS (II)

Time: 3 Hrs. Max. Marks: 80

- Part A and B of each question in each unit consist of very short answer type questions which are to be answered in one or two sentences.

Part C is short answer type and Part D is long answer type.

```
                                    Unit - I
```



```
72 Q. 1 A. Define Euler's Gamma function.
```

Q. 1 B. Write the statement of Euler's theorem.

C. Prove that the zeta

can be extended to a mesomorphic in the whole plane with only a simple pole at $Z=1$ and for satiestfies Riemnn's functional
equation.

OR

$\begin{array}{ll}\text { Let } U \text { and } V \text { be two open subset of with and } \\ & . \text { If it is a component of and } \\ \text { that } \quad \text { and show }\end{array}$
Q. 1 D. State and prove Legendre's duplication formula.

OR

If $\operatorname{Re} \quad$ then show that

Unit - II

Q. 2 A. Write the statement of meanvalue theorem for Harmonic functions.
(2)
Q. 2 B. Define Poisson Kernel.
(2)
Q. 2 C. Let $f(z)$ be analytic in a domain D and let vanish over a domain D_{o} which is a part of D . Then show that vanish over the whole domain D .

OR
Let
be a path from a to b and let
and
that then show that $\left[f_{1}\right] b=\left[g_{1}\right] b$
Q. 2 D. State and prove Schwarz's Reflection Principle for symmetric region.
(12)

OR

Show that when $0<b<1$ the series
$+\frac{z-i b}{1+i b}-\frac{1}{2} \frac{(z-i b)^{2}}{(z+i b)^{2}}+---$ is analytic continuation of the function defined by the series $z-\frac{1}{2} z^{2}+\frac{1}{3} z^{3}---$.

Unit - III

Q. 3 A. Define Rank of an Entire function.
Q. 3 B. Define Green's function.
Q. 3 C. Find the order of $\cos z$ function.

OR
If is an entire function of order and convergence exponent , then show that show that
Q. 3 D. State and prove Hadamrd's three circles theorem.

OR
$\left.\frac{\text { and }}{2}\right]_{0}^{4}$. Let
of the zero of $f(z)$ in \quad arranged as a non-decreasing sequence. Then show that if , prove that $\log \frac{r^{n}|f(0)|}{r_{1}, r_{2}---r_{n}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta$.

Unit - IV

Q. 4 A. Define Landau's constant.
Q. 4 B. Write the statement of \perp - theorem.
Q. 4 C. Let be an analytic function in the disc such that for all z in then show

