\qquad Total No. of Units
Q. 3 D. Using Euler's method, find an approximate value of corresponding to , given that and when

OR

Apply Milne's method to find a solution of the differential equation in the range for the boundary condition at

> Unit - IV
Q.4 A. Write FORTRAN operator symbols and Arithmetic operation. (2)
Q. 4 B. Write advantage of flow chart.
Q. 4 C. What are statements? Explain Input/Output statements.

OR

Write definition of flow chart. Explain all flow chart symbols.
Q. 4 D. Explain control statements.

OR
Solve the expression with the help of FORTRAN :
1)
2)

Code No. : 04/201

Fourth Semester Examination, May 2019

M.Sc. PHYSICS

Paper - II

COMPUTATIONAL METHODS \& PROGRAMMING

Time : 3 Hrs.
Max. Marks: 80

- Part A and B of each question in each unit consist of very short answer type questions which are to be answered in one or two sentences.
Part C (Short answer type) of each question should be answered in 200-250 words.
Part D (Long answer type) of each question should be answered within the word limit 400-450.

OR
Using Jacobi's method, find all the Eigen values and the Eigen vectors of the matrix :
Q. 1 D. Using Iteration method, find a root of the equation $x^{3}-x^{2}-1=0$ correct to four decimal places.

OR

Apply Cramer's rule to solve the following :

Unit - II

Q. 2 A. Reduce to linear form of given equation :
(2)
Q. 2 B. Fit the curve $y=a x^{2}+\frac{b}{x}$.
Q. 2 C. If P is the pull required to lift a load W by means of a pulley block, find a linear law of the form connecting P where P and W are taken in kg-wt. Compute P when $W=150 \mathrm{~kg}$.

OR

Find the polynomial $f(x)$ by using Lagranges formula and hence find for :

Q. 2 D. Obtain the cubic spline for the following data:

x	0	1	2	3
y	2	-6	-8	2

OR
Using Gauss background difference formula. Find $y(8)$ from the following table :

x	0	5	10	15	20	35
	7	25^{11}	14	18	24	32
		Unit - III				

Q. 3 A. Write the formula of Taylor's series method.
Q. 3 B. Write Milne's method for predictor and corrector.
Q. 3 C. Apply Runge-Kutta fourth order method to find an approximate value of y when $x=0.2$, given that and when

OR

Find by Taylor's series method, the values of y at
and to five places of decimals from

